To speak, as I do here, of separate stages immediately raises our problem with genealogy. In the retina, as we will see in Chapter 3, the minimum number of stages between receptors and the output is certainly three, but because of two other kinds of cells, some information takes a more diverted course, with four or five stages from input to output. For the sake of convenience, the diagram ignores these detours despite their importance, and makes the wiring look simpler than it really is. When I speak of the retinal ganglion cells as "stage 3 or 4", it's not that I have forgotten how many there are. To appreciate the kind of transfer of information that takes place in a network of this kind, we may begin by considering the behavior of a single retinal ganglion cell. We know from its anatomy that such a cell gets input from many bipolar cells--perhaps 12, 100, or 1000--and that each of these cells is in turn fed by a similar number of receptors. As a general rule, all the cells feeding into a single cell at a given stage, such as the bipolar cells that feed into a single retinal ganglion cell, are grouped closely together. In the case of the retina, the cells connected to any one cell at the next stage occupy an area 1 to 2 millimeters in diameter; they are certainly not peppered all over the retina. Another way of putting this is that none of the connections within the retina are longer than about 1 to 2 millimeters. If we had a detailed description of all the connections in such a structure and knew enough about the cellular physiology-- for example, which connections were excitatory and which inhibitory--we should in principle be able to deduce the nature of the operation on the information. In the case of the retina and the cortex, the knowledge available is nowhere near what we require. So far, the most efficient way to tackle the problem has been to record from the cells with microelectrodes and compare their inputs and outputs. In the visual system, this amounts to asking what happens in a cell such as a retinal ganglion cell or a cortical cell when the eye is exposed to a visual image.